你好!欢迎来到深圳市品慧电子有限公司!
语言
当前位置:品慧电子 >> 搜索 >> 与“GaN”相关的内容

[RF/微波]GaN如何帮助有线电视提供商找到平衡

品慧电子讯有线电视提供商在升级网络时要把握好分寸。他们需要在不降低性能和可靠性的情况下,满足客户对容量的需求。很多提供商借助 GaN 技术来保持平衡,原因如下。 对速度、容量、性能和可靠性的需求 随着视频、音乐、游戏和在线媒体内容消费的普及,人们需要更快电缆速度和更高容量的数据传输。这让北美有线电视运营商陷入困境,难以在不降低信号完整性和性能的情况下增强网络以满足这类需求。氮化镓 (GaN) 功率放大器技术应运而生,它具有市场所需的线性度、热特性和效率,可满足混合光纤同轴 (HFC) 的性能要求,并支持可靠的有线电视

[RF/微波]GaN HEMT 大信号模型

品慧电子讯GaN HEMT 为功率放大器设计者提供了对 LDMOS、GaAs 和 SiC 技术的许多改进。更有利的特性包括高电压操作、高击穿电压、功率密度高达 8 W/mm、fT 高达 25 GHz 和低静态电流。另一方面,GaN RF 功率器件具有自加热特性,并且元件参数的非线性与信号电平、热效应和环境条件之间存在复杂的依赖关系。这些因素往往给准确预测器件大信号性能造成更多困难。 为了确保器件性能,测试设备通常用于测量器件在所需应用中的性能,但这种传统方法存在缺点:需要开发测试硬件,并且必须进行耗时的负载牵引测量。 出于若干原因,比物理测试更受

[RF/微波]使用GaN进行系统和器件设计

品慧电子讯在本章,我们将介绍设计氮化镓 (GaN) 功率放大器 (PA) 以及其他 GaN 应用的一些技术,并描述 GaN 在许多射频 (RF) 前端中的应用。我们还将探讨技术领导者如何在分立式、单芯片微波集成电路 (MMIC) 以及高度集成模块中使用 GaN 技术,以满足许多应用领域需求。我们还将说明 GaN 热建模在应用中的一些重要方面和优势。 使用 GaN 技术进行设计 过去,GaN PA 设计一直依靠大致的起点、丰富的经验和专业知识来完成。使用 S 参数和负载牵引数据可以提高设计的成功率。有了 GaN 分立式产品,使用精确的非线性模型也有助于更快地生成设计

[电源管理]集成驱动器!原来,GaN电源系统性能升级的奥秘在这里~

品慧电子讯如今,以GaN和SiC为代表的第三代半导体技术风头正劲。与传统的半导体材料相比,GaN和SiC禁带宽度大、击穿电场强度高、电子迁移率高、热导电率大、介电常数小、抗辐射能力强……因此可实现更高的功率密度、更高的电压驱动能力、更快的开关频率、更高的效率、更佳的热性能、更小的尺寸,在高温、高频、高功率、高辐射等功率电子应用领域,不断在向传统的硅基IGBT和MOSFET器件发起强劲的冲击。 在这个第三代半导体技术的热潮之中,GaN相较于SiC,表现出了更高的成长性。根据Yole Development公司的预测,全球GaN功率器件市场规模将

[电源管理]GaN还是SiC,电气工程师该如何选择?

品慧电子讯作为第三代功率半导体的绝代双骄,氮化镓晶体管和碳化硅MOSFET日益引起工业界,特别是电气工程师的重视。之所以电气工程师如此重视这两种功率半导体,是因为其材料与传统的硅材料相比有诸多的优点,如图1所示。氮化镓和碳化硅材料更大的禁带宽度,更高的临界场强使得基于这两种材料制作的功率半导体具有高耐压,低导通电阻,寄生参数小等优异特性。当应用于开关电源领域中,具有损耗小,工作频率高,可靠性高等优点,可以大大提升开关电源的效率,功率密度和可靠性等性能。 1.引 言 作为第三代功率半导体的绝代双骄,氮化镓晶体

[电源管理]使用氮化镓(GaN)提高电源效率

品慧电子讯如今,越来越多的设计者在各种应用中使用基于氮化镓的反激式AC/DC电源。氮化镓之所以很重要,是由于其有助于提高功率晶体管的效率,从而减小电源尺寸,降低工作温度。 晶体管无论是由硅还是由氮化镓制成,都不是理想的器件,使其效率下降的两个主要因素(在一个简化模型中):一个是串联阻抗,称为RDS(ON),另一个是并联电容,称为COSS。这两个晶体管参数限制了电源的性能。氮化镓是一种新技术,设计者可以用它来降低由于晶体管特性的不同而对电源性能产生的影响。在所有晶体管中,随着RDS(ON)的减小,管芯尺寸会增加,这会导致

[电源管理]GaN快充市场赛道提速,SRII交付半导体晶圆设备助力中国产能扩充

品慧电子讯随着苹果公司正式推出140W氮化镓(GaN)快充,以智能手机、笔记本电脑为代表的消费电子快充市场迎来了又一标杆性产品的重要拐点。近两年来,全球GaN充电器的出货量已经突破了数千万只。然而,这仅仅只是开端。Yole Développement的最新调研报告显示,预计2026年全球GaN功率器件的市场规模达到11亿美元;在2020-2026年期间,该市场的年复合增长率将达到70%,其中消费类市场是主要驱动力。为了适应GaN功率器件的大规模量产需求,除了衬底外延等相关制造设备之外,针对功率器件关键工序的沉积镀膜设备也迎来了更庞大的市场需求以及

[RF/微波]基于模型的GAN PA设计基础知识:GAN晶体管S参数、线性稳定性分析与电阻稳定性

品慧电子讯在简单的线性射频/微波放大器设计中,一般利用s参数匹配使增益和增益平坦度最大。同样也会利用这些 S 参数数据来开发匹配网络,以解决放大器稳定性问题。本文讨论在设计氮化镓 (GaN) 功率放大器 (PA) 过程中,使用模型模拟基本的 S 参数和稳定性分析的重要性。文中介绍使用模型和电阻稳定性技术来帮助避免设备不稳定,从而避免影响非线性和线性仿真。 在这篇博文中,我们着重介绍线性 S 参数计算中使用的简单的双端口稳定性分析。我们将使用 Modelithics Qorvo GaN 库中的非线性 Qorvo GaN 功率晶体管模型,并配合使用仿真模板和

[贴片电容]氮化镓(GaN)晶体管并联配置在大功率转换器设计中的应用

作者:Yalcin?Haksoz, 英飞凌科技首席工程师引言当今的功率变换器设计师正在努力寻找新技术新方法,以进一步提高变换器的效率极限和功率密度极限。基于宽带隙半导体技术的氮化镓(GaN)晶体管是目前最具潜力的技术方向之一。与硅器件相类似,单只GaN晶体管的电流处理能力仍有局限。在大功率变换器设计应用中,并联配置GaN晶体管是目前常用的解决方案。由于GaN晶体管材料和结构的特殊性,其并联配置方案与传统硅晶体管并联配置方案有所不同。晶体管并联配置及驱动设计优化理想情况下,在并联配置开关应用时,所用晶

[电路保护]如何在48V系统中轻松应用GaN FET?

品慧电子讯GaN FET可以应用在48V电源系统中,但由于缺乏配合GaN FET工作的合适控制器,工程师们常利用DSP数字解决方案来实现其高频和高效率设计。然而,DSP解决方案因为需要额外的IC而增加了复杂性和难度。本文介绍了一种兼容GaN FET的模拟控制器,它只需很少的器件,就可以让设计人员像使用硅FET一样简单地设计同步降压变换器,同时提供卓越的性能。GaN FET可以应用在48V电源系统中,但由于缺乏配合GaN FET工作的合适控制器,工程师们常利用DSP数字解决方案来实现其高频和高效率设计。然而,DSP解决方案因为需要额外的IC而增加了复杂性和

[RF/微波]利用可采用电子方式重新配置的GaN功率放大器,彻底改变雷达设计

品慧电子讯本文首次展示了一种基于多频段发射器设计的可靠商用大功率放大器,该放大器采用了 Charles Campbell 演示的可重新配置的 PA 专利技术 [2,3,4]。可重新配置的 PA 采用可根据每个相关频段的控制位设置重新配置的单输入和单输出匹配网络。每个位设置针对特定频段的最优性能配置所有匹配网络,从而使 PA 能够在紧凑型封装中实现最优系统级性能。这样就可以减少整体尺寸和重量。这种新型可重新配置的 PA 设计方法可克服传统多频段发射前端设计的多个缺点。最明显的优势就是可消除 PA 输出的频段选择开关。从而将输出损耗降低了 0.8-

[电源管理]利用C2000实时MCU提高GaN数字电源设计实用性

与碳化硅 (SiC)FET 和硅基FET 相比,氮化镓 (GaN) 场效应晶体管 (FET) 可显著降低开关损耗和提高功率密度。这些特性对于数字电源转换器等高开关频率应用大有裨益,可帮助减小磁性元件的尺寸。电力电子行业的设计人员需要采用新的技术和方法来提高GaN 系统的性能,在利用GaN 技术开发现代电源转换系统时,C2000™实时微控制器 (MCU) 可帮助应对各种设计挑战。C2000实时MCU 的优点C2000 MCU 等数字控制器具有出色的适用性,适合各种复杂的拓扑和控制算法,例如零电压开关、零电流开关或采用混合磁滞控制的电感器-电感器-电容器 (LLC) 谐

[电源管理]GaN基电源性能的简易测试技术

品慧电子讯今天,大多数电源路线图都将GaN晶体管作为一个关键平台集成到其中。与Si-mosfet、igbt和SiC-mosfet相比,GaN晶体管的优点意味着工程师们正在将它们广泛地设计到他们的系统中。然而,GaN晶体管在开关电源中的这些进步也使得表征这些电源的性能变得越来越具有挑战性。在半桥上测量高边VGS是诊断晶体管交叉导通的一种传统方法,对于基于GaN的设计来说是一项艰巨的任务。典型的解决方案是使用高成本的测量设备,这并不总是产生有用的结果。本文介绍了一种利用GaN晶体管的独特特性测量交叉导通的简单而经济的方法。在升压或降压变

[电源管理]iCoupler技术为AC/DC设计中的GaN晶体管带来诸多优势

品慧电子讯大规模数据中心、企业服务器或电信交换站使得功耗快速增长,因此高效AC/DC电源对于电信和数据通信基础设施的发展至关重要。但是,电力电子行业中的硅MOSFET已达到其理论极限。同时,近来氮化镓(GaN)晶体管已成为能够取代硅基MOSFET的高性能开关,从而可提高能源转换效率和密度。为了发挥GaN晶体管的优势,需要一种具有新规格要求的新隔离方案。GaN晶体管的开关速度比硅MOSFET要快得多,并可降低开关损耗,原因在于:● 栅极电容和输出电容更低。● 较低的漏源极导通电阻(RDS(ON))可实现更高的电流操作,从而降低了传导损耗

[电源管理]为什么选择GaN晶体管?MASTERGAN1告诉你答案

品慧电子讯ST发布了市场首个也是唯一的单封装集成600 V栅极驱动器和两个加强版氮化镓(GaN)晶体管的MASTERGAN1。同类竞品只提供一颗GaN晶体管,而ST决定增加一颗GaN,实现半桥配置,并允许将MASTERGAN1用于新拓扑。在设计AC-DC变换系统时,工程师可以将其用于LLC谐振变换器。新器件还将适用于其它常见的高能效和高端拓扑,例如,有源钳位反激或正激变换器,还解决了更高额定功率和图腾柱PFC的设计问题。新器件具有高度象征意义,因为它让GaN晶体管在大众化的产品中普及变得更容易。电信设备或数据中心的电源是最早使用这些功率器件的工

[电源管理]脉冲雷达用GaN MMIC功率放大器的电源管理

品慧电子讯包含高度集成和高度复杂的高功率射频(RF)GaN功率放大器(PA)的系统,如脉冲雷达应用,对于当今的数字控制和管理系统来说是一个持续的挑战,以跟上这些不断增长的水平、复杂。包含高度集成和高度复杂的高功率射频(RF)GaN功率放大器(PA)的系统,如脉冲雷达应用,对于当今的数字控制和管理系统来说是一个持续的挑战,以跟上这些不断增长的水平、复杂。为了在这个市场中竞争,今天的控制系统必须非常灵活,可重复使用,并且能够轻松适应各种RF放大器架构,这些架构可以根据设计人员的需

[电源管理]宽禁带半导体器件GaN、SiC设计优化验证

品慧电子讯第三代宽禁带半导体器件GaN和SiC的出现,推动着功率电子行业发生颠覆式变革。新型开关器件既能实现低开关损耗,又能处理超高速dv/dt转换,且支持超快速开关切换频率,带来的测试挑战也成了工程师的噩梦。结合泰克新一代示波器,泰克针对性地推出带宽1Ghz、2500V差模、120dB共模抑制比的全面光隔离探头,提供系统优异的抗干扰能力,帮助工程师进行第三代半导体器件的系统级优化设计。工程师在设计电源产品时,优化上下管的驱动条件,从而保证安全的条件下降低损耗,提高转化效率,可以满足宽禁带半导体器件的测试需求。TIVH

[电源管理]采用GaN实现48V至POL单级转换

品慧电子讯企业服务器、交换机、基站和存储硬件设计师都在寻求在其主板上提高功率密度和效率。随着主板上元件数量的增加和外形尺寸的减小,电源密度成为进一步减小面积的限制因素。电源越小,主板尺寸就越小,减小主板尺寸就可以将更多的主板装入给定的机架中,最大限度地提高数据中心吞吐量和性能。在图1所示的典型电信电源系统中,48VDC输入电压必须进一步降低到中间母线电压(在此例中为3.3V),然后用一个或多个降压直流(DC/DC)转换器降压成处理器、ASIC和FPGA内核轨电压、I/O轨、DDR存储器、PHY芯片和其他低压元件所需的各种稳定

[电源管理]GaN将能源效率推升至新高度!

品慧电子讯劳伦斯伯克利国家实验室(Lawrence Berkeley National Laboratory)[1]在2016年所做的一项研究表明,2020年美国数据中心将要消耗的能源预计会达到730亿千瓦时——这是一个天文数字。只要我们对计算密集型数据服务的需求不断增加,那么,在更小的空间内提供更多能量以尽可能高效地运行这些中心,就会是必然趋势。而这种能源使用情况仅代表数据中心。其实,电信、工业自动化、汽车和许多其他系统也同样需要提供高密度的电源系统。提高电力传输效率的一种方法是利用包括氮化镓(GaN)在内的新的能源半导体技术。与传统

[电源管理]一文掌握 GaN 器件的直接驱动配置!

品慧电子讯在设计开关模式电源时,主要品质因数(FOM)包括成本、尺寸和效率。[1]这三个FOM是耦合型,需要考虑诸多因素。例如,增加开关频率可减小磁性元件的尺寸和成本,但会增加磁性元件的损耗和功率器件中的开关损耗。由于GaN的寄生电容低且没有二极管反向恢复,因此与MOSFET和IGBT相比,GaN HEMT具有显著降低损耗的潜力。受益于集成器件保护,直接驱动GaN器件可实现更高的开关电源效率和更佳的系统级可靠性。高电压(600V)氮化镓(GaN)高电子迁移率晶体管(HEMT)的开关特性可实现提高开关模式电源效率和密度的新型拓扑。GaN具