你好!欢迎来到深圳市品慧电子有限公司!
语言
当前位置:品慧电子 >> 搜索 >> 与“隔离”相关的内容

[电源管理]隔离式 AC-DC 反激电源设计

【导读】LinkSwitch-LP 系列旨在取代手机/无绳电话、PDA、数码相机和便携式音频播放器等应用中输出功率 < 2.5 W 的低效线频线性变压器电源。LinkSwitch-LP 还可用作白色家电等应用中的辅助电源。 LinkSwitch-LP 系列旨在取代手机/无绳电话、PDA、数码相机和便携式音频播放器等应用中输出功率 < 2.5 W 的低效线频线性变压器电源。LinkSwitch-LP 还可用作白色家电等应用中的辅助电源。 LinkSwitch-LP 将高压功率 MOSFET开关与 ON/OFF 控制器集成在一个设备中。它完全由漏极引脚自供电,具有低 EMI 的抖动开关频率,并且具有全面的故障

[电源管理]隔离式 DC/DC 转换器——稳压与非稳压

【导读】低功率隔离式 DC/DC 转换器尺寸小巧,适用于通信设备、仪器仪表和工业电子领域,可以为对空间要求严苛的应用场景提供理想的解决方案。RECOM 提供广泛的 1W 和 2W 隔离式 DC/DC 转换器供您选择。本文将介绍这些器件的一些具体应用。 非稳压与稳压转换器 RECOM 提供稳压与非稳压隔离式 DC/DC 转换器。选择哪种取决于具体应用。如果电源电压稳定并且负载保持相对恒定,则非常适合采用非稳压 DC/DC 转换器。这是因为非稳压 DC/DC 转换器也能提供电压电平转换、电流隔离和短路保护(/P 型号),同时成本比稳压 DC-DC 转换器要低得多。

[电源管理]隔离式 DC-DC 转换器

【导读】电路的实际测量结果为 250 kHz。R3 的值可能会变化,并且可能需要端接至 VDD 或接地,插入 R3 是为了调整振荡器跳变点,以便在 U1A 的输出端提供 50% 占空比波形,并在 U1B 提供其补充波形。该方波及其补码连接到IXDD404SI(4Amp 双栅极驱动器)的 INA 和 INB 输入。 隔离式 6 W DC-DC 转换器,可在 2500 VAC 势垒上提供低成本且高效的隔离电源。图 1 中所示的这种隔离式 DC-DC 转换器采用现成的电源组件构建,从设计之初就融入了低成本、现成的组件,但批量生产的成本低于 3 美元。DC-DC 转换器可以提供两个隔离的 3 瓦输出,也可

[互连技术]使用隔离式磁性霍尔效应电流传感器进行电流检测

【导读】磁性电流传感器运用了流过导体的电流会产生磁场的物理原理。基于此原理,TMCS1123 使用霍尔效应传感器来检测流经器件引线框的电流量并提供与输入电流成正比的电压输出。磁性电流传感器是隔离式电流检测设计 –TMCS1123 可支持高达 1.1kVDC 的增强型工作电压和高达 2.0kVDC 的基本工作电压。霍尔效应传感器会在整个温度和生命周期内发生漂移(表现为输出误差),这一点让它获得的评价不高。然而,凭借德州仪器 (TI) 在信号链方面的专业技术,TMCS1123 在整个寿命和温度范围内具有出色的漂移参数(最大值为 0.5%)。 磁性电流传感器

[互连技术]如何赋能新一代宽带隙半导体?这三类隔离栅极驱动器了解一下~

【导读】在电力电子领域,为了最大限度地降低开关损耗,通常希望开关时间短。然而快速开关同时隐藏了高压瞬变的危险,这可能会影响甚至损坏处理器逻辑。因此,必须设计更高性能的开关驱动系统。 在电力电子领域,为了最大限度地降低开关损耗,通常希望开关时间短。然而快速开关同时隐藏了高压瞬变的危险,这可能会影响甚至损坏处理器逻辑。因此,必须设计更高性能的开关驱动系统。 目前,宽带隙半导体GaN和SiC的使用数量正在急剧增加,但是并非所有栅极驱动器都适合使用这些技术,ADI针对这些GaN和SiC产品提供了丰富栅极驱动器,并将栅极驱

[EMI/EMC]非隔离式变换器电磁干扰(EMI)的分析与建模方法(下)

【导读】如果在设计初期没有考虑电磁干扰(EMI)问题,那元件在最终设计阶段将很难满足 EMI 要求。对 EMI 进行建模与分析将帮助设计人员在设计之初即优化 EMI 并预测 EMI 性能。 EMI 包括两种类型:传导 EMI 和辐射 EMI。传导 EMI 通过物理接触传播(通过电缆或其他导体到达接收设备),而辐射 EMI 噪声不需要物理接触,通过开放空间传播到接收设备。 本文将讨论辐射 EMI 以及预测辐射 EMI 的建模方法。参阅本系列之上篇可以了解传导 EMI 的更多信息。 辐射 EMI 确定辐射 EMI 的传统方法是使用电磁场理论进行推导与分析。但就工程应用和建模

[EMI/EMC]485隔离模块应用遇到问题无法解决?看这一篇就够了!

【导读】在使用总线通讯模块时,工程师常常会遇到产品失效的情况,无法找到对应的解决方案。本文将对隔离收发模块应用时可能遇到的常见问题进行梳理,进行原因分析并提供对应解决方案。 一、引言 在使用总线通讯模块时,工程师常常会遇到产品失效的情况,无法找到对应的解决方案。本文将对隔离收发模块应用时可能遇到的常见问题进行梳理,进行原因分析并提供对应解决方案。 二、485通讯总线架构组成 在分析问题原因、确定解决方案之前,首先需要对产品的架构组成具备一定的了解。以隔离485通讯模块为例,产品可以分为以下三个部分。 三、

[EMI/EMC]元器件100%国产化的隔离收发器,你了解多少?

【导读】目前客户对产品的元器件国产化率追求度越来越高,甚至要求元器件100%国产化的产品需求。因此,致远电子推出元器件100%国产化隔离收发器模块。 近几年客户对产品的元器件国产化率追求度越来越高,我司推出元器件100%国产化的RS-485隔离收发器有RSM(3)485JCHT系列、RSM(3)485PHT系列、RSM485MG和DMX505,如图1所示。元器件100%国产化的CAN隔离收发器有CTM8251KT、CTM8251KAT、CTM1051MG和CTM1051AMG,如图2所示。 图1 元器件100%国产化的RS-485隔离收发器认证报告 图2 元器件100%国产化的CAN隔离收发器认证报告 本文主要介绍元器件

[EMI/EMC]隔离偏置变压器寄生电容如何影响 EMI 性能

【导读】小型隔离电源为从电动汽车牵引逆变器到工厂控制模块等应用中的隔离栅提供电力。在本电源提示中,我将研究不同的隔离式偏置电源拓扑及其电磁干扰 (EMI) 性能。正如您将看到的,隔离变压器上的寄生电容是共模噪声传播的主要因素。小型隔离电源为从电动汽车牵引逆变器到工厂控制模块等应用中的隔离栅提供电力。在本电源提示中,我将研究不同的隔离式偏置电源拓扑及其电磁干扰 (EMI) 性能。正如您将看到的,隔离变压器上的寄生电容是共模噪声传播的主要因素。 在牵引逆变器中,栅极驱动器驱动高功率开关——通常是绝缘栅双极晶体管(IG

[电路保护]适用于高性能功率器件的 SiC 隔离解决方案

【导读】随着设备变得越来越小,电源也需要跟上步伐。因此,当今的设计人员有一个优先目标:化单位体积的功率(W/mm 3)。实现这一目标的一种方法是使用高性能电源开关。尽管需要进一步的研发计划来提高性能和安全性,并且使用这些宽带隙 (WBG) 材料进行设计需要在设计过程中进行额外的工作,但氮化镓 (GaN) 和 SiC 已经为新型电力电子产品铺平了道路阶段。 使用 SiC 栅极驱动器可以减少 30% 的能量损耗,同时限度地延长系统正常运行时间。 Maxim Integrated 推出了一款碳化硅 (SiC) 隔离式栅极驱动器,用于工业市场的高效电源。该公司声称

[电路保护]使用电压/电流模拟光耦合器进行隔离

【导读】隔离电压/电流感测在工业应用中具有多种用途,如图 1 所示。它可用于检测电源浪涌时的过压或断电时的欠流。此外,它还提供信号隔离以及电噪声和瞬态干扰的抑制,防止系统故障。ACPL-K370/K376 是具有内置电压/电流阈值检测电路的模拟光耦合器器件。该器件具有检测精度高、交流或直流电压检测范围宽、阈值电流低等特点。ACPL-K370/K376 非常适合用于许多工业传感应用,例如功率监控和温度传感。 隔离电压/电流感测在工业应用中具有多种用途,如图 1 所示。它可用于检测电源浪涌时的过压或断电时的欠流。此外,它还提供信号隔离以及

[电路保护]高压数字控制应用中实现安全隔离与低功耗的解决方案

【导读】在高压应用中,实现有效的电气隔离至关重要,它可以避免多余的漏电流在系统中具有不同地电位(GPD)的两个部分之间流动[1]。如图1(左)所示,从输入到输出的DC返回电流可能导致两个接地之间产生电位差,从而导致信号完整性降低、质量下降。这就是隔离器(即隔离式栅极驱动器IC[2]或数字隔离器)的用武之地,如图1(右)所示。隔离器通过阻止电路两部分之间的DC和不受控的AC电流流动,仅允许通信信号和功率通过隔离屏障。此外,隔离器还为人与高压系统的交互提供了必要的保护,并提供了电平转换功能,使不同电压级别的系统之间可以

[电路保护]让高压应用更高效可靠的超宽体封装数字隔离器

【导读】随着工业和汽车领域对高可靠性、更长使用寿命和更高信号完整性的需求不断增长,给高压应用带来了一系列挑战。在高压系统中,必须通过隔离手段构建可靠的隔离栅,将敏感的电子元器件与快速瞬变的高压组件进行电气隔离,以保证电源安全性、更好的系统性能和更高的可靠性。这需要考虑很多因素,包括隔离额定值、爬电距离和电气间隙、共模瞬态抗扰度(CMTI)和电磁干扰(EMI)。 近年来,在光伏、充电桩、新能源汽车、储能等新兴需求以及工控、电源、电力等传统应用有增无减的需求推动下,高压数字控制应用的隔离需求日益增长,高效率

[电源管理]使用隔离式 DC/DC 转换器的演示

【导读】考虑到安全冗余的需要以及保持初级和次级之间整体间距的需要,我们串联放置了两个 Y 电容器(C100 和 C101)以桥接初级和次级接地。因此,有效电容是每个电容器值的二分之一。某些情况下需要串联三个电容器(330 pF 电容器)以保持必要的间距。 两块板来展示我们的UCC12051-Q1隔离式直流/直流转换器的辐射性能与 CISPR 25 5 类限制的对比。该转换器专为 5V 输入和 5V 输出而设计,负载为 100mA,带有典型的电池线路电磁干扰滤波器。一块板(未发布)在所有四层上的初级和次级之间有 8 毫米的间距,一块板(用于汽车 CISPR 25、5 类

[电源管理]用于SiC MOSFET的隔离栅极驱动器使用指南

【导读】SiC MOSFET 在功率半导体市场中正迅速普及,因为它最初的一些可靠性问题已得到解决,并且价位已达到非常有吸引力的水平。随着市场上的器件越来越多,必须了解 SiC MOSFET 与 IGBT 之间的共性和差异,以便用户充分利用每种器件。本系列文章概述了安森美 M 1 1200 V SiC MOSFET 的关键特性及驱动条件对它的影响,作为安森美提供的全方位宽禁带生态系统的一部分,还将提供 NCP51705(用于 SiC MOSFET 的隔离栅极驱动器)的使用指南。本文为第三部分,将重点介绍NCP51705 SiC 栅极驱动器的使用指南。 NCP51705 是一种 SiC 栅极驱动器,

[电源管理]无光耦解决方案如何帮助应对隔离式DC-DC设计挑战?

【导读】幸好,有一种全新的无光耦反激式DC-DC转换器解决方案,可省去光耦合器和相关反馈电路,并且无需使用第三变压器绕组。新解决方案还带来了新的输出电压精度基准。 简介 出于安全原因或为了确保复杂系统正常工作,我们有时需要使用隔离式DC-DC解决方案。传统的隔离解决方案会使用光耦合器和附加电路,或者复杂的变压器设计,以形成跨越隔离栅的反馈环路,从而调节输出电压。各种附加元件使设计变得复杂而庞大。光耦合器会随着时间的推移而退化,降低系统的可靠性。此外,终端设备的外形尺寸越来越小,给电源所留的空间很有限,增加了

[通用技术]使用新一代高度可调的低介电薄膜来解决串扰、隔离等制造挑战

【导读】想象一下,在一个挤满人的大房间里,每个人都有一条您需要的重要信息。他们都很乐意告诉您他们的信息,但问题是,他们都在同一时间说话。房间里的人越密集,就越难将想要关注的信息与周围的杂音区分开。提升集成电路中的介电层性能可以在现在和未来的存储器和逻辑电路发展中产生巨大的战略影响。想象一下,在一个挤满人的大房间里,每个人都有一条您需要的重要信息。他们都很乐意告诉您他们的信息,但问题是,他们都在同一时间说话。房间里的人越密集,就越难将想要关注的信息与周围的杂音区分开。这就是“串扰”,维基百科将其定

[EMI/EMC]隔离电源在轨道交通设备中的EMC设计

【导读】随着铁路行业的不断发展,为了提高车载运行的可靠性和提高乘客的舒适性,大量的电子设备被应用于轨道交通中。根据《车载电子设备标准》EN 50155-2007标准要求,车载设备除需满足基本性能、可靠性指标之外,同时还需满足相应的电磁兼容指标要求。本文结合车载设备电磁兼容标准EN 50121-3-2标准,简单阐述设备的电磁兼容指标,通过案例应用分析,总结轨道交通设备电磁兼容设计方法。 1.引言 轨道交通设备的电磁兼容是指在轨道交通运营的电磁环境中,轨道交通系统设备与设备之间、设备与外界之间,能够正常工作、对其它设备不构成电磁

[电路保护]比对隔离电源与非隔离电源

【导读】在给嵌入式系统设计电源电路,或选用成品电源模块时,要考虑的重要问题之一就是用隔离还是非隔离的电源方案。在进行讨论之前,我们先了解下隔离与非隔离的概念,及两者的主要特点。在给嵌入式系统设计电源电路,或选用成品电源模块时,要考虑的重要问题之一就是用隔离还是非隔离的电源方案。在进行讨论之前,我们先了解下隔离与非隔离的概念,及两者的主要特点。一、电源隔离与非隔离的概念电源的隔离与非隔离,主要是针对开关电源而言,业内比较通用的看法是:1、隔离电源:电源的输入回路和输出回路之间没有直接的电气连接,输入