你好!欢迎来到深圳市品慧电子有限公司!
语言
当前位置:品慧电子 >> 搜索 >> 与“串扰”相关的内容

[通用技术]使用新一代高度可调的低介电薄膜来解决串扰、隔离等制造挑战

【导读】想象一下,在一个挤满人的大房间里,每个人都有一条您需要的重要信息。他们都很乐意告诉您他们的信息,但问题是,他们都在同一时间说话。房间里的人越密集,就越难将想要关注的信息与周围的杂音区分开。提升集成电路中的介电层性能可以在现在和未来的存储器和逻辑电路发展中产生巨大的战略影响。想象一下,在一个挤满人的大房间里,每个人都有一条您需要的重要信息。他们都很乐意告诉您他们的信息,但问题是,他们都在同一时间说话。房间里的人越密集,就越难将想要关注的信息与周围的杂音区分开。这就是“串扰”,维基百科将其定

[传感技术]又进一步!华为超导量子芯片专利公布:可降低量子比特串扰

今年前三季度,华为光在研发上就投入了1105.81亿元,不仅没有减少,反而相比上年同期增加了82.41亿元。作为一家科研实力有目共睹的公司,华为之所以如此重视研发,其最关键的原因之一是保证核心领域有自己的技术。日前,华为又公布了一项重要专利,与超导量子芯片有关。企查查专利摘要显示,该发明公开的超导量子芯片包括耦合器和控制器。其中,耦合器用于耦合第一超导比特电路和第二超导比特电路,耦合器的频率响应曲线包括至少一个相位反转点,相位反转点包括频率响应曲线的谐振点或极点。据

[传感技术]华为超导量子芯片专利公布,可降低量子比特之间串扰

感谢IT之家网友 沐天、蔬菜 的线索投递! IT之家11 月 2?日消息,据国家知识产权局中国专利公布公告(申请公布号:CN115271077A)显示,华为技术有限公司“超导量子芯片”专利于 11 月 1 日公布。华为技术有限公司申请的专利名为“超导量子芯片”,专利摘要描述称:本发明实施例公开了一种超导量子芯片,包括耦合器和控制器;其中耦合器用于耦合第一超导比特电路和第二超导比特电路,耦合器的频率响应曲线包括至少一个相位反转点,所述相位反转点包括频率响应曲线的谐振点或极点;控制器用于

[传感技术]华为超导量子芯片专利公布:可降低量子比特串扰

今年前三季度,华为光在研发上就投入了1105.81亿元,不仅没有减少,反而相比上年同期增加了82.41亿元。作为一家科研实力有目共睹的公司,华为之所以如此重视研发,其最关键的原因之一是保证核心领域有自己的技术。日前,华为又公布了一项重要专利,与超导量子芯片有关。企查查专利摘要显示,该发明公开的超导量子芯片包括耦合器和控制器。其中,耦合器用于耦合第一超导比特电路和第二超导比特电路,耦合器的频率响应曲线包括至少一个相位反转点,相位反转点包括频率响应曲线的谐振点或极点。据了解,控制器用于调整

[电路保护]哪些原因会导致 BGA 串扰?

【导读】在多门和引脚数量众多的集成电路中,集成度呈指数级增长。得益于球栅阵列 (ball grid array ,即BGA) 封装的发展,这些芯片变得更加可靠、稳健,使用起来也更加方便。BGA 封装的尺寸和厚度都很小,引脚数则更多。然而,BGA 串扰严重影响了信号完整性,从而限制了 BGA 封装的应用。下面我们来探讨一下 BGA 封装和 BGA 串扰的问题。 本文要点 ●BGA 封装尺寸紧凑,引脚密度高。●在 BGA 封装中,由于焊球排列和错位而导致的信号串扰被称为 BGA 串扰。●BGA 串扰取决于入侵者信号和受害者信号在球栅阵列中的位置。 在多门和引脚数量众

[传感技术]如何破解高空车用超声波传感器的信号串扰问题?

  在工业应用中,超声波传感器通过换能器发射与接收到声波的时间差,结合介质声速信息,来评估被测目标物距离,以及判断物体有无。其能精确可靠检测各种材料目标物,不受恶劣环境限制,可解决各种棘手问题,已被广泛应用于各个行业。  当我们需要检测一个宽范围的区域时,往往将几个超声波传感器阵列并排安装,来轻松实现这一目的。您知道吗?此时,同步功能的使用显得尤为重要,它能帮助您解决各种应用中相邻传感器之间的信号串扰或输出不稳定等烦恼。  高空作业平台的安全工作  在登高车应用中,超声波传感器

[传感器]关于CMOS传感器的串扰和量子效率仿真方法

Lumerical是Ansys公司开发的用于微纳光子器件、芯片及系统的设计仿真软件。Lumerical 的器件级仿真工具能考虑多物理场的光、电、热作用。系统级仿真工具包含了丰富的分析组,能协助使用者设计和优化光集成电路。这款软件应用广泛,能够帮助很多行业解决一些实际问题。 01 说明 在CMOS传感器中,光和电都可能引入串扰,是由于输入光的波动性质、不完美的滤色片以及光学叠层中的对准失配等,一些光将渗入相邻的子像素,在硅中产生电荷。此外,从目标子像素中吸收的光产生的电荷也可以扩散到相邻子像素中,并由相邻阱收集。 02 综

[通用技术]如何从仿真的世界看串扰

品慧电子讯随着技术的飞速发展,电子产品的而尺寸越来越小,数据的传输速度却越来越高。普通消费类电子产品的PCB电路板很多至少是四层、六层甚至更多层。当信号沿传输线传播时,信号路径和返回路径之间将产生电力线,围绕在信号路径周围就会产生非常丰富的电磁场。这些延伸出去的场也称为边缘场,边缘场将会通过互容与互感转化为另一条传输线上的能量。而串扰的本质,其实就是传输线之间的互容与互感。 串扰是怎么产生的 随着技术的飞速发展,电子产品的而尺寸越来越小,数据的传输速度却越来越高。普通消费类电子产品的PCB电路板很多至少

[电路保护]针对SiC串扰抑制方法的测试报告

品慧电子讯近年来,以SiCMOSFET 为代表的宽禁带半导体器件因其具有高开关频率、高开关速度、高热导率等优点,已成为高频、高温、高功率密度电力电子变换器的理想选择。然而随着SiC MOSFET开关速度加快,桥式电路受寄生参数影响加剧,串扰现象更加严重。由于SiC MOSFET 正向阈值电压与负向安全电压较小,串扰问题引起的正负向电压尖峰更容易造成开关管误导通或栅源极击穿,进而增加开关损耗,严重时损坏开关管,因此合适的串扰抑制方法对提高变换器工作可靠性、提升其功率密度具有重要意义。 产生机理:正负尖峰电压主要有两个地方产生,一

[互连技术]硬件工程师必看:包地与串扰

品慧电子讯工程界常常使用保护地线进行隔离,来抑制信号间的相互干扰。的确,保护地线有时能够提高信号间的隔离度,但是保护地线并不是总是有效的,有时甚至反而会使干扰更加恶化。使用保护地线必须根据实际情况仔细分析,并认真处理。工程界常常使用保护地线进行隔离,来抑制信号间的相互干扰。的确,保护地线有时能够提高信号间的隔离度,但是保护地线并不是总是有效的,有时甚至反而会使干扰更加恶化。使用保护地线必须根据实际情况仔细分析,并认真处理。

[电源管理]EMC基础知识:何谓串扰

串扰是由于线路之间的耦合引发的信号和噪声等的传播,也称为“串音干扰”。特别是“串音”在模拟通讯时代是字如其意、一目了然的表达。两根线(也包括PCB的薄膜布线)独立的情况下,相互间应该不会有电气信号和噪声等的影响,但尤其是两根线平行的情况下,会因存在于线间的杂散(寄生)电容和互感而引发干扰。所以,串扰也可以理解为感应噪声。继上一篇“频谱基础”之后,本文将对“串扰”进行介绍。串扰串扰是由于线路之间的耦合引发的信号和噪声等的传播,也称为“串音干扰”。特别是“串音”在模拟通讯时代是字如其意、一目了然的表达。

[互连技术]【干货分析】小间距QFN封装PCB设计的串扰抑制

品慧电子讯随着电路设计高速高密的发展趋势,QFN封装已经有0.5mm pitch甚至更小pitch的应用。由小间距QFN封装的器件引入的PCB走线扇出区域的串扰问题也随着传输速率的升高而越来越突出。随着电路设计高速高密的发展趋势,QFN封装已经有0.5mm pitch甚至更小pitch的应用。由小间距QFN封装的器件引入的PCB走线扇出区域的串扰问题也随着传输速率的升高而越来越突出。对于8Gbps及以上的高速应用更应该注意避免此类问题,为高速数字传输链路提供更多裕量。本文针对PCB设计中由小间距QFN封装引入串扰的抑制方法进

[RF/微波]如何对串扰进行仿真?

品慧电子讯为了更好的理解和解释串扰的各种概念,今天尝试对串扰进行仿真,选择最简单易用的HyperLynx进行一系列的串扰仿真。为了更好的理解和解释串扰的各种概念,今天尝试对串扰进行仿真,选择最简单易用的HyperLynx进行一系列的串扰仿真。1、微带线串扰仿真1)仿真模型在HyperLynx中搭建如下电路,U1为驱动端,电路模型为CMOS, 3.3V, 上升沿驱动,U2为接收模式。在HyperLynx中通过对叠层进行设置,设置传输线为微带线,传输线线宽为9 mil, 线间距为8 mil, 距离走线下方参考层的高度为5 mil, 相对介电常

[RF/微波]再读串扰--高级篇

品慧电子讯关于串扰,之前发布过两篇文章,但都浅尝辄止,本文试图从串扰的根本原理出发,重新探讨串扰话题,为高级篇。关于串扰,之前发布过两篇文章,但都浅尝辄止,本文试图从串扰的根本原理出发,重新探讨串扰话题,为高级篇。提到串扰,对于大多数信号完整性工程师来说,首先想到的应该就是图1所示的典型的串扰原理图和图2所示的典型的串扰波形。图1典型的串扰原理图图2典型的串扰波形从侵入线(Aggressor)的发送端注入一个具有快速上升沿的阶跃信号,经过td到达侵入线的接收端,在受害线(

[互连技术]关于串扰,你想了解的都在这儿了~

品慧电子讯串扰是信号完整性中最基本的现象之一,尤其现在大多数电子产品越来越小,PCB板上走线密度越来越大,信号速率越来越高,串扰问题也越来越困扰SI工程师。1、串扰的概念串扰是信号完整性中最基本的现象之一,尤其现在大多数电子产品越来越小,PCB板上走线密度越来越大,信号速率越来越高,串扰问题也越来越困扰SI工程师。到底什么是串扰呢,我们从最直观的一个波形开始,看一看串扰到底会引起什么问题,下图黄色圈内的波形即为受到串扰影响的信号,在信号高电平或低电平产生毛刺,从而影响系统稳

[电源管理]电磁串扰分析的新要求

品慧电子讯本文将描述在SoC设计方法论中追求新流程的目的。该流程包括提取、评估和分析复杂SoC及其封装环境的全电磁耦合模型。分析结果强调了电磁耦合对现代复杂SOC设计性能和功能的影响。本文将描述在SoC设计方法论中追求新流程的目的。该流程包括提取、评估和分析复杂SoC及其封装环境的全电磁耦合模型。分析结果强调了电磁耦合对现代复杂SOC设计性能和功能的影响。背景随着纳米尺度技术的引入,互连线的纵横展弦比提高了。因此,来自邻近攻击者的电容串扰对受害者网络会有这

[EMI/EMC]简易4模型,教你学会控制容性耦合串扰

品慧电子讯在产品的EMC设计中,对PCB和物理结构的EMC评估,是非常重要的一环,往往还具有决定性作用。一个比较优秀的设计,应该可以较大程度地避免干扰电流流过产品内部电路,并将其导向大地。而容性耦合串扰在整个干扰路径中起着决定性作用,而线间寄生电容在容性串扰中又起着关键作用。本文通过4个不同的模型,来看看不同环境下,对线间寄生电容的影响?以此为PCB设计带来参考意义。模型介绍1.相邻层印制线平行布线这种模型主要是分析两条印制线形成的平板电容,其实在实际中,一般情况下的印制线宽是没有PCB的厚度大的,更不

[EMI/EMC]在电路设计中,到底是用紧耦合还是松耦合来减少串扰?

品慧电子讯串扰在电路板设计中无可避免,如何减少串扰就变得尤其重要。在前面的一些文章中给大家介绍了很多减少串扰和仿真串扰的方法。本文作者从松紧耦合影响串扰的角度进行了分析。在国外的论坛上也有类型相关的文章。虽然最后的结论不是大家最想要的,但是这也验证了信号完整性界的名言:It depends.串扰的根本原因是信号和返回路径的边缘电场和磁场从一条传输线耦合到另一条传输线。图1为两个微带线的边缘电场线。图1 两条微带线的边缘电场线电场和磁场之间的耦合再加上干扰线上的信号传输方向对受害线造成不同类型的串扰,

[EMI/EMC]使用电感降低噪声注意点 : 串扰、GND线反弹噪声

品慧电子讯这之前作为使用电感的降噪对策,介绍了电感和铁氧体磁珠、共模滤波器。本文将主要介绍PCB板布局相关的注意事项。串扰串扰是因电路板布线间的杂散电容和互感,噪声与相邻的其他电路板布线耦合。下面是LC滤波器的图形布局和部件配置带来的串扰及其对策示例。在左侧的布局示例中,VCC线路中有LC滤波器,滤波器后的布线与含有滤波器前的噪声的布线相邻,因此噪声因串扰而耦合,滤波效果下降。右侧为对策示例,采用了不与含有噪声的线路相邻的布局,从而可将噪声耦合控制在最低限度内。GND线反弹噪声在该示例中可以看出

[EMI/EMC]高速差分过孔之间的串扰分析

品慧电子讯在硬件系统设计中,通常我们关注的串扰主要发生在连接器、芯片封装和间距比较近的平行走线之间。但在某些设计中,高速差分过孔之间也会产生较大的串扰,本文对高速差分过孔之间的产生串扰的情况提供了实例仿真分析和解决方法。高速差分过孔间的串扰对于板厚较厚的PCB来说,板厚有可能达到2.4mm或者3mm。以3mm的单板为例,此时一个通孔在PCB上Z方向的长度可以达到将近118mil。如果PCB上有0.8mm pitch的BGA的话,BGA器件的扇出过孔间距只有大约31.5mil。如图1所示,两对相邻差分过孔之间Z方向的并行长度H大于100mil,而两对